Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Magnus G. Johnston* and William T. A. Harrison

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
m.g.johnston@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mg}-\mathrm{O})=0.0014 \AA$
R factor $=0.023$
$w R$ factor $=0.061$
Data-to-parameter ratio $=19.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Magnesium selenite dihydrate, $\mathrm{MgSeO}_{3} \cdot \mathbf{2 H} \mathbf{2} \mathbf{O}$

Hydrothermally prepared $\mathrm{MgSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ consists of pairs of edge-sharing $\mathrm{MgO}_{6}\left(4 \mathrm{O}, 2 \mathrm{H}_{2} \mathrm{O}\right)$ octahedra $\left[d_{\mathrm{av}}(\mathrm{Mg}-\mathrm{O})=\right.$ $2.095(2) \AA$. \AA. These are linked by pyramidal SeO_{3} units $\left[d_{\mathrm{av}}(\mathrm{Se}-\mathrm{O})=1.697(2) \AA\right]$ and hydrogen bonds forming a three-dimensional network.

Comment

$\mathrm{MgSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is isostructural with the mineral cobaltomenite (Leider \& Gattow, 1967) and the synthetic compounds $\mathrm{CoSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NiSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Wildner, 1990).

The magnesium cation adopts a slightly distorted octahedral coordination with $\mathrm{Mg}-\mathrm{O}$ distances typical of other magnesium selenites (Mueller et al., 1996; Kohn et al., 1976). The bond valence sum (BVS; Brown, 1996) for Mg of 2.04 is close to the expected value of 2.00 . O 4 and O 5 belong to water molecules and have a significant role in hydrogen bonding.

The SeO_{3} unit adopts its usual pyramidal coordination (Hawthorne et al., 1987; Harrison, 1999) with BVS for $\mathrm{Se}=$ 4.09 (expected 4.00).

The MgO_{6} octahedra form edge-sharing, $\mathrm{Mg}_{2} \mathrm{O}_{10} \mathrm{H}_{8}$ pairs (Fig. 1), with each pair connected to six SeO_{3} pyramids. Each SeO_{3} unit links three octahedral pairs. When viewed down [001] (Fig. 2), the octahedral pairs are situated at the unit-cell corners (UCC) and body centre (BC). This also shows the twisting of the $\mathrm{BC} \mathrm{Mg} \mathrm{Mg}_{2} \mathrm{O}_{10} \mathrm{H}_{8}$ pair relative to the UCC pairs.

Hydrogen bonding, which has been described in detail elsewhere (Wildner, 1990), completes the three-dimensional framework. All four H atoms are involved (Table 2). O4 is a donor, whilst O 5 both donates and accepts hydrogen bonds.

Figure 1
Fragment of the $\mathrm{MgSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ structure (50% displacement ellipsoids). H atoms are shown as white spheres. Symmetry codes as in Table 1, with the addition of (v) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$ and (vi) $1+x, y, z$.

Received 27 February 2001
Accepted 6 March 2001
Online 9 March 2001

Figure 2
Slice of $\mathrm{MgSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ viewed down [001], with MgO_{6} groups represented as orange octahedra and Se (yellow) atoms represented by spheres of arbitrary radii.

Experimental

Direct reaction of $\mathrm{MgCO}_{3}(0.759 \mathrm{~g}, 9 \mathrm{mmol}), \mathrm{SeO}_{2}(1.333 \mathrm{~g}, 12 \mathrm{mmol})$ and 15 ml of water; the reactants were placed in a 23-ml-capacity sealed teflon-lined steel bomb in an oven at 413 K . The bomb was removed after 26 d and cooled over 3 h . Upon opening, the bomb was seen to contain a clear solution and very large (ca $1.5 \times 0.5 \times 0.5 \mathrm{~mm}$ maximum) colourless single crystals. The crystals were recovered by suction filtration and washing with water.

Crystal data

$$
\begin{aligned}
& \mathrm{MgSeO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=187.30 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=6.4818(3) \AA \\
& b=8.7975(5) \AA \\
& c=7.6367(4) \AA \\
& \beta=98.753(1)^{\circ} \\
& V=430.40(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=2.891 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3192 reflections
$\theta=3.6-32.5^{\circ}$
$\mu=8.77 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Chunk, colourless
$0.52 \times 0.18 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.118, T_{\text {max }}=0.268$
4223 measured reflections
1545 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.061$
$S=1.02$
1545 reflections
81 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0447 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.92 \mathrm{e}_{\mathrm{A}^{-3}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.91 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.92 (4)

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Se1-O1	$1.6996(13)$	$\mathrm{Mg} 1-\mathrm{O} 3$	$2.0739(13)$
$\mathrm{Se} 1-\mathrm{O} 2$	$1.6864(13)$	$\mathrm{Mg} 1-\mathrm{O} 3^{\text {iii }}$	$2.1054(14)$
$\mathrm{Se} 1-\mathrm{O} 3$	$1.7042(12)$	$\mathrm{Mg} 1-\mathrm{O} 4$	$2.0144(14)$
$\mathrm{Mg} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.1383(15)$	$\mathrm{Mg} 1-\mathrm{O} 5$	$2.1822(16)$
$\mathrm{Mg} 1-\mathrm{O} 2^{\text {ii }}$	$2.0559(14)$		
$\mathrm{Se} 1-\mathrm{O} 1-\mathrm{Mg}^{\text {iv }}$	$119.11(7)$	$\mathrm{Se} 1-\mathrm{O} 3-\mathrm{Mg} 1^{\text {iii }}$	$137.18(7)$
$\mathrm{Se} 1-\mathrm{O} 2-\mathrm{Mg}^{\text {ii }}$	$123.73(7)$	$\mathrm{Mg} 1-\mathrm{O} 3-\mathrm{Mg}^{\text {iii }}$	$97.98(5)$
$\mathrm{Se} 1-\mathrm{O} 3-\mathrm{Mg} 1$	$116.10(7)$		
Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (ii) $-x, 1-y, 1-z ;$ (iii) $1-x, 1-y, 1-z ;$ (iv)			
$\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.			

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-H \cdots A$
$\mathrm{O} 4-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.67 (6)	2.09 (6)	2.743 (2)	165 (5)
$\mathrm{O} 4-\mathrm{H} 2 \cdots \mathrm{O}{ }^{\text {ii }}$	0.80 (4)	2.18 (4)	2.965 (2)	171 (4)
$\mathrm{O} 5-\mathrm{H} 3 \cdots \mathrm{O}{ }^{\text {iii }}$	0.77 (3)	2.11 (3)	2.8734 (19)	171 (3)
$\mathrm{O} 5-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {ii }}$	0.90 (3)	1.85 (3)	2.741 (2)	167 (3)

The highest difference peak is $0.71 \AA$ from Se1 and the deepest difference hole is $0.71 \AA$ from Se1.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Harrison, W. T. A. (1999). Acta Cryst. C55, 1980-1983.
Hawthorne, F. C., Groat, L. A. \& Erat, T. S. (1987). Acta Cryst. C43, 2042-2044.
Kohn, K., Inoue, K., Horie, O. \& Akimoto, S. (1976). J. Solid State Chem. 18, 27-23.
Leider, O. J. \& Gattow, G. (1967). Naturwissenschaften, 54, 443.
Mueller, H., Unterweide, K. \& Engelen, B. (1996). Z. Kristallogr. 211, 700-704.
Shape Software (1999). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wildner, M. (1990). Neues Jahrb. Mineral. Monatsh. 8, 363-375.

