inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Magnus G. Johnston* and William T. A. Harrison

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: m.g.johnston@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Mg–O) = 0.0014 Å R factor = 0.023 wR factor = 0.061 Data-to-parameter ratio = 19.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Magnesium selenite dihydrate, MgSeO₃·2H₂O

Hydrothermally prepared MgSeO₃·2H₂O consists of pairs of edge-sharing MgO₆ (4O, 2H₂O) octahedra $[d_{av}(Mg-O) = 2.095 (2) \text{ Å}]$. These are linked by pyramidal SeO₃ units $[d_{av}(Se-O) = 1.697 (2) \text{ Å}]$ and hydrogen bonds forming a three-dimensional network.

Comment

MgSeO₃·2H₂O is isostructural with the mineral cobaltomenite (Leider & Gattow, 1967) and the synthetic compounds $CoSeO_{3}$ ·2H₂O and NiSeO₃·2H₂O (Wildner, 1990).

The magnesium cation adopts a slightly distorted octahedral coordination with Mg–O distances typical of other magnesium selenites (Mueller *et al.*, 1996; Kohn *et al.*, 1976). The bond valence sum (BVS; Brown, 1996) for Mg of 2.04 is close to the expected value of 2.00. O4 and O5 belong to water molecules and have a significant role in hydrogen bonding.

The SeO₃ unit adopts its usual pyramidal coordination (Hawthorne *et al.*, 1987; Harrison, 1999) with BVS for Se = 4.09 (expected 4.00).

The MgO₆ octahedra form edge-sharing, $Mg_2O_{10}H_8$ pairs (Fig. 1), with each pair connected to six SeO₃ pyramids. Each SeO₃ unit links three octahedral pairs. When viewed down [001] (Fig. 2), the octahedral pairs are situated at the unit-cell corners (UCC) and body centre (BC). This also shows the twisting of the BC $Mg_2O_{10}H_8$ pair relative to the UCC pairs.

Hydrogen bonding, which has been described in detail elsewhere (Wildner, 1990), completes the three-dimensional framework. All four H atoms are involved (Table 2). O4 is a donor, whilst O5 both donates and accepts hydrogen bonds.

Figure 1

Fragment of the MgSeO₃.2H₂O structure (50% displacement ellipsoids). H atoms are shown as white spheres. Symmetry codes as in Table 1, with the addition of $(v) \frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$ and (vi) 1 + x, y, z.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 27 February 2001

Accepted 6 March 2001

Online 9 March 2001

Figure 2

Slice of MgSeO₃.2H₂O viewed down [001], with MgO₆ groups represented as orange octahedra and Se (yellow) atoms represented by spheres of arbitrary radii.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0447P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.023$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.061$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.02	$\Delta \rho_{\rm max} = 0.92 \ {\rm e} \ {\rm \AA}^{-3}$
1545 reflections	$\Delta \rho_{\rm min} = -0.91 \text{ e } \text{\AA}^{-3}$
81 parameters	Extinction correction: SHELXL97
All H-atom parameters refined	(Sheldrick, 1997)
	Extinction coefficient: 0.92 (4)

Table 1

Selected geometric parameters (Å, °).

Se1-O1	1.6996 (13)	Mg1-O3	2.0739 (13)
Se1-O2	1.6864 (13)	Mg1-O3 ⁱⁱⁱ	2.1054 (14)
Se1-O3	1.7042 (12)	Mg1-O4	2.0144 (14)
Mg1-O1 ⁱ	2.1383 (15)	Mg1-O5	2.1822 (16)
Mg1-O2 ⁱⁱ	2.0559 (14)		
Se1-O1-Mg1 ^{iv}	119.11 (7)	Se1-O3-Mg1 ⁱⁱⁱ	137.18 (7)
Se1-O2-Mg1 ⁱⁱ	123.73 (7)	Mg1-O3-Mg1 ⁱⁱⁱ	97.98 (5)
Se1-O3-Mg1	116.10 (7)		
	1.1 (11)		

Symmetry codes: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$; (ii) -x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) $-x, \frac{1}{2}+y, \frac{1}{2}-z.$

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O4−H1···O1 ⁱ	0.67 (6)	2.09 (6)	2.743 (2)	165 (5)
O4−H2···O5 ⁱⁱ	0.80(4)	2.18 (4)	2.965 (2)	171 (4)
O5−H3···O1 ⁱⁱⁱ	0.77 (3)	2.11 (3)	2.8734 (19)	171 (3)
$O5-H4\cdots O2^{ii}$	0.90 (3)	1.85 (3)	2.741 (2)	167 (3)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (iii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$.

The highest difference peak is 0.71 Å from Se1 and the deepest difference hole is 0.71 Å from Se1.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

References

- Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
- Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
- Harrison, W. T. A. (1999). Acta Cryst. C55, 1980-1983.
- Hawthorne, F. C., Groat, L. A. & Erat, T. S. (1987). Acta Cryst. C43, 2042-2044. Kohn, K., Inoue, K., Horie, O. & Akimoto, S. (1976). J. Solid State Chem. 18, 27-23.
- Leider, O. J. & Gattow, G. (1967). Naturwissenschaften, 54, 443.
- Mueller, H., Unterweide, K. & Engelen, B. (1996). Z. Kristallogr. 211, 700-704. Shape Software (1999). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wildner, M. (1990). Neues Jahrb. Mineral. Monatsh. 8, 363-375.

Experimental

Direct reaction of MgCO₃ (0.759 g, 9 mmol), SeO₂ (1.333 g, 12 mmol) and 15 ml of water; the reactants were placed in a 23-ml-capacity sealed teflon-lined steel bomb in an oven at 413 K. The bomb was removed after 26 d and cooled over 3 h. Upon opening, the bomb was seen to contain a clear solution and very large (ca $1.5 \times 0.5 \times 0.5$ mm maximum) colourless single crystals. The crystals were recovered by suction filtration and washing with water.

 $D_x = 2.891 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 3192

reflections $\theta = 3.6 - 32.5^{\circ}$

 $\mu = 8.77 \text{ mm}^{-1}$

Chunk, colourless

 $0.52 \times 0.18 \times 0.15 \text{ mm}$

T = 293 K

Crystal data

MgSeO ₃ ·2H ₂ O
$M_r = 187.30$
Monoclinic, P2 ₁ /n
a = 6.4818(3) Å
b = 8.7975 (5) Å
c = 7.6367 (4) Å
$\beta = 98.753 (1)^{\circ}$
$V = 430.40 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART1000 CCD area-	1426 reflections with $I > 2\sigma(I)$
detector diffractometer	$R_{\rm int} = 0.030$
ω scans	$\theta_{\rm max} = 32.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 7$
(SADABS; Bruker, 1999)	$k = -13 \rightarrow 12$
$T_{\min} = 0.118, \ T_{\max} = 0.268$	$l = -10 \rightarrow 11$
4223 measured reflections	Intensity decay: none
1545 independent reflections	